since 2006 Help Sitemap |
||||||||||||
< Forum > | ||||||||||||
< Problems > | ||||||||||||
< Quantum History Theory > | ||||||||||||
< Examine Probability Formula > | ||||||||||||
Φ[χ] = Σj exp[α∫dt φj(χ(t), t)], [dar(f; a, a + 1/α)]pre Φ[χ] = ∫dx f(x)* Φ[ξ(□, x)] = ∫dx f(x)* Σj exp[α∫dt φj(ξ(t, x), t)] = Σj ∫dx f(x)* exp[α∫aa+1/α dt φj(x, t)] exp[α∫t'<a or t'≧a+1/α dt' φj(χ(t'), t')] dar(f; a, a + 1/α) Φ[χ(a,a+1/α)] = [dar(f; a, a + 1/α)]pre Φ[χ] = Σj ∫dx f(x)* exp[α∫aa+1/α dt φj(x, t)] exp[α∫t'<a or t'≧a+1/α dt' φj(χ(t'), t')] = Σj ∫dx f(x)* exp[α∫aa+1/α dt φj(x, t)] exp[α∫-∞a dt' φj(χ(a,a+1/α)(t'), t') + α∫a∞ dt' φj(χ(a,a+1/α)(t'), t'+1/α)] ≒ Σj ∫dx f(x)* exp φj(x, a) exp[ Σk<0 φj(χ(a,a+1/α)(a + k/α), a + k/α) + Σk≧0 φj(χ(a,a+1/α)(a + k/α), a + (k + 1)/α)] ∵ α ≫ 1 dar(f; a, a + 1/α) Φ[χ] ≒ Σj ∫dx f(x)* exp φj(x, a) exp[ Σk<0 φj(χ(a + k/α), a + k/α) + Σk≧0 φj(χ(a + k/α), a + (k + 1)/α)] Let exp φ'j be a solution of the old Schrödinger equation for each j. Let {exp φ'1(□, t), exp φ'2(□, t), ・・・} be an orthonormal basis of the state space of the old quantum mechanics for each t. Let exp φj be a wave function given from exp φ'j by the twist remove normalization for each j. ∫Dχ dar(g; b, b + 1/α) Φ[χ]・{dar(f; a, a + 1/α) Φ[χ]}* ≒ Σj,j' [Πk∫dχ(a+k/α)] ∫dx' g(x')* exp φj'(x', b) exp[ Σk'<0 φj'(χ(b + k'/α), b + k'/α) + Σk'≧0 φj'(χ(b + k'/α), b + (k' + 1)/α)] {∫dx f(x)* exp φj(x, a) exp[ Σk<0 φj(χ(a + k/α), a + k/α) + Σk≧0 φj(χ(a + k/α), a + (k + 1)/α)]}* = Σj,j' ∫dx' g(x')* exp φj'(x', b) ∫dx f(x) [exp φj(x, a)]* Πk<0 ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + k/α)]* [exp φj(χ(a + k/α), a + k/α)] Π0≦k<α(b-a) ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + (k + 1)/α)]* [exp φj(χ(a + k/α), a + k/α)] Πk≧α(b-a) ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + k/α)]* [exp φj(χ(a + k/α), a + k/α)] = Σj,j' ∫dx' g(x')* exp φj'(x', b) ∫dx f(x) [exp φj(x, a)]* (δj,j')∞ Π0≦k<α(b-a) ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + (k + 1)/α)]* [exp φj(χ(a + k/α), a + k/α)] = Σj <g|j,b><j,a|f> Π0≦k<α(b-a) <j,a+(k+1)/α|j,a+k/α> ≒ Σj <g|j,b><j,a|f> ∵ ※ = Σj <g|U(b,a)|j,a><j,a|f> = <g|U(b,a)|f> if α(b - a) ∈ N. ---※--- Π0≦k<α(b-a) ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + (k + 1)/α)]* [exp φj(χ(a + k/α), a + k/α)] = Π0≦k<α(b-a) <j,a+(k+1)/α|j,a+k/α> ≒ Π0≦k<α(b-a) <j,a+k/α|j,a+k/α> ∵the twist remove normalization = <j,a|j,a>α(b-a) = 1 --- However, notice that the new grammar version of the Schrödinger equation has no solution such that Φ[χ] = Σj exp[α∫dt φj(χ(t), t)]. A few approximations caused by the finiteness of α shift the result from the one in the old quantum mechanics. Such an approximation is not needed if α is infinity. I don't think that it is a prediction of the new theory distinct from the old quantum mechanics. I think that it should be understood as the fact that a quantum history and a measurement are less related to each other than in the old quantum mechanics. A prediction of the new theory distinct from the old quantum mechanics will be caused by the entanglement of a quantum history in a time-like direction. --- This article is a rewrite of the article 'Examine Probability Formula' in the following page. Later Edition@Theory of Quantum History Entangled in Time-like Direction@Products of Grammatical Physics@Grammatical Physics@Forum@Vintage(2008-2014) The content of this article was presented by me at JPS 2013 Autumn Meeting. |
||||||||||||
Author Yuichi Uda, Write start at 2015/05/21/20:19JST, Last edit at 2015/05/23/18:18JST | ||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|