since 2006
Help Sitemap
< Forum >
< Problems >
< Quantum History Theory >
< Examine Probability Formula >

Φ[χ] = Σj exp[α∫dt φj(χ(t), t)],

[dar(f; a, a + 1/α)]pre Φ[χ]
= ∫dx f(x)* Φ[ξ(□, x)]
= ∫dx f(x)* Σj exp[α∫dt φj(ξ(t, x), t)]
= Σj ∫dx f(x)* exp[α∫aa+1/α dt φj(x, t)] exp[α∫t'<a or t'≧a+1/α dt' φj(χ(t'), t')]

dar(f; a, a + 1/α) Φ[χ(a,a+1/α)]
= [dar(f; a, a + 1/α)]pre Φ[χ]
= Σj ∫dx f(x)* exp[α∫aa+1/α dt φj(x, t)] exp[α∫t'<a or t'≧a+1/α dt' φj(χ(t'), t')]
= Σj ∫dx f(x)* exp[α∫aa+1/α dt φj(x, t)] exp[α∫-∞a dt' φj(a,a+1/α)(t'), t') + α∫a dt' φj(a,a+1/α)(t'), t'+1/α)]
≒ Σj ∫dx f(x)* exp φj(x, a)
   exp[ Σk<0 φj(a,a+1/α)(a + k/α), a + k/α) + Σk≧0 φj(a,a+1/α)(a + k/α), a + (k + 1)/α)] ∵ α ≫ 1

dar(f; a, a + 1/α) Φ[χ]
≒ Σj ∫dx f(x)* exp φj(x, a) exp[ Σk<0 φj(χ(a + k/α), a + k/α) + Σk≧0 φj(χ(a + k/α), a + (k + 1)/α)]

Let exp φ'j be a solution of the old Schrödinger equation for each j.
Let {exp φ'1(□, t), exp φ'2(□, t), ・・・} be an orthonormal basis of the state space of the old quantum mechanics for each t.
Let exp φj be a wave function given from exp φ'j by the twist remove normalization for each j.

∫Dχ dar(g; b, b + 1/α) Φ[χ]・{dar(f; a, a + 1/α) Φ[χ]}*
≒ Σj,j'k∫dχ(a+k/α)]
  ∫dx' g(x')* exp φj'(x', b) exp[ Σk'<0 φj'(χ(b + k'/α), b + k'/α) + Σk'≧0 φj'(χ(b + k'/α), b + (k' + 1)/α)]
  {∫dx f(x)* exp φj(x, a) exp[ Σk<0 φj(χ(a + k/α), a + k/α) + Σk≧0 φj(χ(a + k/α), a + (k + 1)/α)]}*
= Σj,j' ∫dx' g(x')* exp φj'(x', b) ∫dx f(x) [exp φj(x, a)]*
  Πk<0 ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + k/α)]* [exp φj(χ(a + k/α), a + k/α)]
  Π0≦k<α(b-a) ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + (k + 1)/α)]* [exp φj(χ(a + k/α), a + k/α)]
  Πk≧α(b-a) ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + k/α)]* [exp φj(χ(a + k/α), a + k/α)]
= Σj,j' ∫dx' g(x')* exp φj'(x', b) ∫dx f(x) [exp φj(x, a)]*
  (δj,j') Π0≦k<α(b-a) ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + (k + 1)/α)]* [exp φj(χ(a + k/α), a + k/α)]
= Σj <g|j,b><j,a|f> Π0≦k<α(b-a) <j,a+(k+1)/α|j,a+k/α>
≒ Σj <g|j,b><j,a|f> ∵ ※
= Σj <g|U(b,a)|j,a><j,a|f>
= <g|U(b,a)|f>
if α(b - a) ∈ N.

---※---
Π0≦k<α(b-a) ∫dχ(a+k/α) [exp φj(χ(a + k/α), a + (k + 1)/α)]* [exp φj(χ(a + k/α), a + k/α)]
= Π0≦k<α(b-a) <j,a+(k+1)/α|j,a+k/α>
≒ Π0≦k<α(b-a) <j,a+k/α|j,a+k/α> ∵
the twist remove normalization
= <j,a|j,a>α(b-a)
= 1
---

However, notice that the new grammar version of the Schrödinger equation has no solution such that Φ[χ] = Σj exp[α∫dt φj(χ(t), t)].

A few approximations caused by the finiteness of α shift the result from the one in the old quantum mechanics.
Such an approximation is not needed if α is infinity.
I don't think that it is a prediction of the new theory distinct from the old quantum mechanics.
I think that it should be understood as the fact that a quantum history and a measurement are less related to each other than in the old quantum mechanics.

A prediction of the new theory distinct from the old quantum mechanics will be caused by the entanglement of a quantum history in a time-like direction.


---

This article is a rewrite of the article 'Examine Probability Formula' in the following page.
Later Edition@Theory of Quantum History Entangled in Time-like Direction@Products of Grammatical Physics@Grammatical Physics@Forum@Vintage(2008-2014)

The content of this article was presented by me at JPS 2013 Autumn Meeting.

Author Yuichi Uda, Write start at 2015/05/21/20:19JST, Last edit at 2015/05/23/18:18JST