since 2006 Help Sitemap |
||||||||||||
< Forum > | ||||||||||||
< Problems > | ||||||||||||
< Quantum History Theory > | ||||||||||||
< Measure of Functional Integral > | ||||||||||||
When φ'(x, t) = exp[φ(x, t)] is an wave function in the old quantum mechanics and Φ[χ] = exp[α∫dtφ(χ(t), t)], measure of a functional integration ∫Dχ Φ[χ]*Φ[χ] is not trivial. Because ∫dx1[φ'(x1, t)1/n]*φ'(x1, t)1/n ・・・ ∫dxn[φ'(xn, t)1/n]*φ'(xn, t)1/n ≠ ∫dx φ'(x, t)*φ'(x, t). Let χε(・・・, x-2, x-1, x0, x1, x2, ・・・) be a function such that if kε≦ t < (k + 1)ε, [χε(x)](t) = xk. ∫d∞x Φ[χε(x)]*Φ[χε(x)] = ∫d∞x exp{α∫dt[φ([χε(x)](t), t)* + φ([χε(x)](t), t)]} = ∫d∞x exp{αΣk∫kε(k+1)εdt[φ([χε(x)](t), t)* + φ([χε(x)](t), t)]} = ∫d∞x exp{αΣk∫kε(k+1)εdt[φ(xk, t)* + φ(xk, t)]} ≒ ∫d∞x exp{αΣk∫kε(k+1)εdt[φ(xk, kε)* + φ(xk, kε)]} = ∫d∞x exp{αεΣk[φ(xk, kε)* + φ(xk, kε)]} = ∫d∞x Πk exp{αε[φ(xk, kε)* + φ(xk, kε)]} = ∫d∞x Πk {exp[φ(xk, kε)* + φ(xk, kε)]}αε = ∫d∞x Πk {exp[φ(xk, kε)*]exp[φ(xk, kε)]}αε = ∫d∞x Πk {[φ'(xk, kε)]*[φ'(xk, kε)]}αε ≠ 1 (ε≠1/α) ∫d∞x {Φ[χε(x)]1/(αε)}*Φ[χε(x)]1/(αε) = ∫d∞x exp{(1/ε)∫dt[φ([χε(x)](t), t)* + φ([χε(x)](t), t)]} = ∫d∞x exp{(1/ε)Σk∫kε(k+1)εdt[φ([χε(x)](t), t)* + φ([χε(x)](t), t)]} = ∫d∞x exp{(1/ε)Σk∫kε(k+1)εdt[φ(xk, t)* + φ(xk, t)]} ≒ ∫d∞x exp{(1/ε)Σk∫kε(k+1)εdt[φ(xk, kε)* + φ(xk, kε)]} = ∫d∞x exp{Σk[φ(xk, kε)* + φ(xk, kε)]} = ∫d∞x Πk exp{[φ(xk, kε)* + φ(xk, kε)]} = ∫d∞x Πk exp[φ(xk, kε)*]exp[φ(xk, kε)] = ∫d∞x Πk [φ'(xk, kε)]*[φ'(xk, kε)] = 1 limε→0∫d∞x {Φ[χε(x)]1/(αε)}*Φ[χε(x)]1/(αε) = 1 |
||||||||||||
Author Yuichi Uda, Write start at 2016/04/05/20:48JST, Last edit at 2016/04/09/15:48JST | ||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|