since 2006 Help Sitemap |
||||||||||||
< Forum > | ||||||||||||
< Problems > | ||||||||||||
< Quantum History Theory > | ||||||||||||
< Translation Invariance > | ||||||||||||
t' = t + a, x' = x + b, χ'(t') = χ(t) + b, Φ'[χ'] = Φ[χ]. χ'(t') = χ(t' - a) + b ∴χ' = χ(□ - a) + b where b(t') = b. Φ'[χ(□ - a) + b] = Φ[χ] [δ/δχ(τ)]Φ[χ] = (∂/∂ε)Φ[χ+εδ(□ - τ)]|ε=0 = (∂/∂ε)Φ'[[χ+εδ(□ - τ)](□ - a) + b]|ε=0 [[χ+εδ(□ - τ)](□ - a) + b](t') = [χ+εδ(□ - τ)](t' - a) + b = χ(t' - a) +εδ((t' - a) - τ) + b = [χ(□ - a) +εδ(□ - a - τ) + b](t') = [χ' +εδ(□ - a - τ)](t') ∴ [χ+εδ(□ - τ)](□ - a) + b = χ' +εδ(□ - a - τ) [δ/δχ(τ)]Φ[χ] = (∂/∂ε)Φ'[χ' +εδ(□ - a - τ)]|ε=0 = [δ/δχ'(τ+ a)]Φ'[χ'] [δ/δχ(τ)]2Φ[χ] = [δ/δχ(τ)][δ/δχ'(τ+ a)]Φ'[χ'] = [δ/δχ(τ)]Ψ'[χ'] = [δ/δχ(τ)]Ψ[χ] = [δ/δχ'(τ+ a)]Ψ'[χ'] = [δ/δχ'(τ+ a)]2Φ'[χ'] where Ψ'[χ'] ≡ [δ/δχ'(τ+ a)]Φ'[χ']. ∫dt [1/(2m)][(-i = ∫dt [1/(2m)][(-i = ∫dt' [1/(2m)][(-i [χ(□-ε)](t) + b = χ(t - ε) + b = χ'((t - ε)') = χ'(t -ε+ a) = χ'(t' -ε) = [χ'(□-ε)](t') ∴ [χ(□-ε)]' = χ'(□-ε) (i = (i ∴ (i ⇔ (i The Uda equation is invariant under any translation when V = 0. |
||||||||||||
Author Yuichi Uda, Write start at 2016/04/09/16:05JST, Last edit at 2016/04/10/15:26JST | ||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|