since 2006 Help Sitemap |
||||||||||||
< Forum > | ||||||||||||
< Products > | ||||||||||||
< Quantum History Theory > | ||||||||||||
< Stacked Daruma Game Formula > | ||||||||||||
In this page, I make Stacked Daruma Game Formula by using Exact Solution of Uda Equation (5). Stacked Daruma Formula gives transition amplitude. First I chose a quantum history represented by functional Φ such that Φ[ν] = ∑k exp{α∫-∞∞dt[-iωtν(t) + a(k)ν(t) + ib(k)ν(t)]} where a(k)n and b(k)n are defined as follows. |uk> = ∑n=0∞ λ(k)n|n> = ∑n=0∞ exp(a(k)n + ib(k)n)|n>. { |uk> | ∃k } is a orthonotmal basis of the state space.
ε = 1/α, b - a = Nε, ν(t) = nk if a + kε ≦ t < a + (k + 1)ε. . Φ[ν''] = ∑k exp{α∫-∞bdt''[-iωt''ν''(t'') + a(k)ν''(t'') + ib(k)ν''(t'')] + α∫bb+εdt''[-iωt''ν''(t'') + a(k)ν''(t'') + ib(k)ν''(t'')] + α∫b+ε∞dt''[-iωt''ν''(t'') + a(k)ν''(t'') + ib(k)ν''(t'')]} = ∑k exp{α∫-∞bdt''[-iωt''ν(t'') + a(k)ν(t'') + ib(k)ν(t'')] + α∫bb+εdt''[-iωt''ν(b) + a(k)ν(b) + ib(k)ν(b)] + α∫b+ε∞dt''[-iωt''ν(t'' - ε) + a(k)ν(t''-ε) + ib(k)ν(t''-ε)]} = ∑k exp{αε[-iω(b + ε/2)ν(b) + a(k)ν(b) + ib(k)ν(b)]} × exp{α∫-∞bdt[-iωtν(t) + a(k)ν(t) + ib(k)ν(t)] + α∫b∞dt[-iω(t + ε)ν(t) + a(k)ν(t) + ib(k)ν(t)]} = ∑k ψk(ν(b), b + ε/2) exp{α∫-∞∞dt[-iωtν(t) + a(k)ν(t) + ib(k)ν(t)] - iωεα∫b∞dt ν(t)}. Φ[ν']* = ∑j ψj(ν(a), a + ε/2)* exp{α∫-∞∞dt[iωtν(t) + a(j)ν(t) - ib(j)ν(t)] + iωεα∫a∞dt ν(t)}. Φ[ν''] Φ[ν']* = ∑k ∑j ψk(ν(b), b + ε/2)ψj(ν(a), a + ε/2)* × exp{α∫-∞∞dt[a(k)ν(t) + ib(k)ν(t)] exp{α∫-∞∞dt[a(j)ν(t) - ib(j)ν(t)] × exp[iωεα∫abdt ν(t)] = ∑k ∑j ψk(ν(b), b + ε/2)ψj(ν(a), a + ε/2)* [Πs=-∞∞ λ(k)n(s) λ(j)n(s)*] exp[(i/ <ν(b), ν(a)>Daruma = ∑k ∑j ψk(ν(b), b + ε/2)ψj(ν(a), a + ε/2)* (δjk)∞ = ∑k ψk(ν(b), b + ε/2)ψk(ν(a), a + ε/2)* ∵ (δjk)∞ = δjk = ∑k <ν(b)|exp[-(i/ = <ν(b)| exp[-(i/ = <ν(b)| exp[-(i/ = exp[-(i/ = exp[-iω(b - a)ν(a)]δν(b)ν(a). Perhaps Daruma contraction can be defined as <χ(b), χ(a)>Daruma = ∑ν(b)=0∞ ∑ν(a)=0∞ <vχ(b)|ν(b)><ν(b), ν(a)>Daruma<ν(a)|vχ(a)> = ∑ν(b)=0∞ ∑ν(a)=0∞ <vχ(b)|ν(b)><ν(b)| exp[-(i/ = <vχ(b)| exp[-(i/ where |vx> is an eigenvector of the position operator with eigenvalue x. For example, if we take ε = 1/(2α), [Πk=-∞∞∑n(k)=0∞] Πs=-∞∞ [λ(k)n(s)]1/2 [λ(j)n(s)*]1/2 arises as a factor in the calculation. However, ∑n=0∞ [λ(k)n]1/2 [λ(j)n*]1/2 is not concerned with ∑n=0∞λ(k)n λ(j)n* = δjk at all. So, ε ≠ 1/α is impossible. Especially ε → +0 is impossible because ∑n=0∞ [λ(k)n]αε [λ(j)n*]αε → ∑n=0∞ 1 = ∞ as ε → +0. If λ(k)n = δkn and ε → +0, ∑n=0∞ [λ(k)n]αε [λ(j)n*]αε = ∑n=0∞ δknδjn = δjk, exp{αε[-iω(b + ε/2)ν(b) + a(k)ν(b) + ib(k)ν(b)]} = [ψk(ν(b), b + ε/2)]αε = δν(b)kexp[-ikωαε(b + ε/2)] → δν(b)k, <ν(b), ν(a)>Daruma = ∑k ∑j δν(b)kδν(a)j(δjk)∞ = ∑k δν(b)kδν(a)k = δν(b)ν(a) = <ν(b)|ν(a)>. This result also is undesirable because it does not represent time development at all. Can <ν(b), ν(a)>Daruma be modified as <ν(b), ν(a)>Daruma = [Πk=-∞∞∑n(k)=0∞]exp[-(i/ and ε → +0 ? Such a modification is also impossible because Φ[ν] consists of many terms. Each term of Φ[ν''] Φ[ν']* is not raised to the αε-th power. If λ(k)n = δkn and ε → +0 and <ν(b), ν(a)>Daruma = {[Πk=-∞∞∑n(k)=0∞]exp[-(i/ <ν(b), ν(a)>Daruma = δν(b)ν(a)exp[-iω(b - a)ν(a)] = <ν(b)| exp[-(i/ This might be another candidate but I feel that this too is not very plausible because of λ(k)n = δkn and exp[-(i/ First assumption in this page can be criticized for being arbitrary. So, now I rechose a quantum history represented by functional Φ such that Φ[ν] = ∑r ∑k exp{α∫-∞∞dt[-iωtν(t) + a(r, k)ν(t) + ib(r, k)ν(t)]} where a(r, k)n and b(r, k)n are defined as follows. |u(r)k> = ∑n=0∞ λ(r, k)n|n> = ∑n=0∞ exp(a(r, k)n + ib(r, k)n)|n>. Br ≡ { |u(r)k> | ∃k } is an orthonotmal basis of the state space for each r. ∀r; ∀k; ∀s; r ≠ s ⇒ not[∃j; ∃c ∈ C; |u(r)k> = c|u(s)j>]. ∑n=0∞ λ(r, k)n λ(s, j)n* = ∑n=0∞ <n|u(r)k> <u(s)j|n> = <u(s)j|u(r)k>. r ≠ s ⇒ ∀j; ∀k; | <u(s)j|u(r)k> | < 1. ∴ [∑n=0∞ λ(r, k)n λ(s, j)n*]∞ = δrsδjk. <ν(b), ν(a)>Daruma = (∑r 1) × <ν(b)| exp[-(i/ --- The content of this page was developed in Number Representation of Uda Equation @ Quantum History Theory @ Problems. |
||||||||||||
Author Yuichi Uda, Write start at 2019/11/09/16:36JST, Last edit at 2019/11/29/15:46JST | ||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|