Quantum Field Theory on the Time-Axis
SourceCodeOf_HumanGenome > Quantum Field Theory on the Time-Axis @ 2012/5/6 15:20 |
---|
This topic is dedicated to discussion
of operator formulation of the new grammar version of quantum
mechanics. It can be called quantum field theory on the time-axis. It will be used to imitate the derivation of Feynman's path integral in the new grammar version of quantum mechanics. --- Last edited at 2012/06/22/15:13JST |
SourceCodeOf_HumanGenome > Path Integral @ 2012/5/6 15:30 |
---|
|χ> is a functional such that
|χ>[χ'] = δ[χ'-χ]. <χ| is a linear functional such that <χ|Φ = Φ[χ], and so <χ|χ'> = |χ'>[χ] = δ[χ-χ']. [∫Dχ|χ><χ|Φ][χ']=∫Dχ(<χ|Φ)|χ>[χ']=∫Dχ Φ[χ]δ[χ'-χ]=Φ[χ'] ∴ ∫Dχ|χ><χ|Φ=Φ ∴ ∫Dχ|χ><χ|=1 where ∫Dχ=limn→∞Πk=1n∫dχ(kT/n). [X(t)Φ][χ] = χ(t)Φ[χ] [X(t)|χ>][χ'] = χ'(t)|χ>[χ'] = χ'(t)δ[χ-χ'] = χ(t)δ[χ-χ'] = χ(t){|χ>[χ']} = [χ(t)|χ>][χ'] ∴ X(t)|χ> = χ(t)|χ> [P(t)Φ][χ] = -(i {[X(t),P(t')]-Φ}[χ] ={[X(t)P(t')-P(t')X(t)]Φ}[χ] ={X(t)P(t')Φ-P(t')X(t)Φ}[χ] =[X(t)P(t')Φ][χ]-[P(t')X(t)Φ][χ] ={X(t)[P(t')Φ]}[χ]-{P(t')[X(t)Φ]}[χ] =χ(t)[P(t')Φ][χ]-(-i =χ(t)(-i =[χ(t),-(i =(i =[(i ∴ [X(t),P(t')]- = (i |π> is defined as a functional such that |π>[χ] = exp[(iα/ <χ|π>=|π>[χ]=exp[(iα/ [P(t)|π>][χ] = -(i = -(i = π(t)exp[(iα/ = π(t)|π>[χ] = [π(t)|π>][χ] ∴ P(t)|π> = π(t)|π> <π| is defined as a linear functional such that <π|Φ = ∫Dχ exp[-(iα/ <π|χ>=∫Dχ' exp[-(iα/ =∫Dχ' exp[-(iα/ =exp[-(iα/ [∫Dπ|π><π|Φ][χ] =∫Dπ(<π|Φ)|π>[χ] =∫Dπ{∫Dχ' exp[-(iα/ =∫Dχ'∫Dπ exp{(iα/ =∫Dχ' limn→∞[(α/ =∫Dχ' Φ[χ']limn→∞[(α/ =∫Dχ' Φ[χ']limn→∞Πk=1nδ(χ(jT/n)-χ'(jT/n)) =∫Dχ' Φ[χ']δ[χ-χ'] =Φ[χ] ∴ ∫Dπ|π><π|Φ = Φ ∴ ∫Dπ|π><π| = 1 where ∫Dπ=limn→∞[(α/ <π|P(t)Φ=∫Dχ exp[-(iα/ =∫Dχ exp[-(iα/ =∫Dχ Φ[χ](i =∫Dχ Φ[χ]π(t)exp[-(iα/ =π(t)<π|Φ ∴ <π|P(t) = π(t)<π| The new grammar version of Schrödinger equation is as follows. (i Φε[χ] ≡ Φ[χ(□-ε)] <χ|Φε>=<χ(□-ε)|Φ> (i H=∫dt{[P(t)]2/(2m)+V(X(t))} |Φε>=exp[(-iα/ =limn→∞{exp[(-iα/ =limn→∞∫Dχ1・・・∫Dχn exp[(-iα/ <χk+1|exp[(-iα/ =∫Dπ<χk+1|π><π|exp[(-iα/ =∫Dπ exp[(-iα/ =∫Dπ exp[(-iα/ =∫Dπ exp{(iα/ =limn'→∞[(α/ =limn'→∞[(α/ =limn'→∞{(α/ =limn'→∞{(α/ C≡limn'→∞{(α/ This is a difficulty! ξ(kε/n, t)≡χk(t) <χk+1|exp[(-iα/ =C exp[(iα/ <χn+1|Φε>=∫Dξexp[(iα/ where ∫Dξ=limn→∞Cnlimn'→∞Πk=1nΠj=1n'∫dξ(kε/n,jT/n') =limn→∞limn'→∞{(α/ Here the difficulty is absorbed into the functional integral measure. Φε[ξ(ε,□)] = ∫Dξ exp[(iα/ Φε[ξ(ε,□)] = Φ[ξ(ε,□-ε)] Φ[ξ(ε,□-ε)] = ∫Dξ exp[(iα/ This message follows the idea on 2012/05/01. --- Last edited at 2012/07/18/14:53JST |
SourceCodeOf_HumanGenome > Interpretation of the Path Integral @ 2012/6/22 15:32 |
---|
Though it is impossible because
entanglement is inevitable, if Φ[χ] = limn→∞ Πk=1n φ(χ(kT/n),kT/n), the conclusion of the previous message is understood as follows. φ(ξ(ε,kT/n),kT/n+ε) = ∫Dξ(□,kT/n) exp[(iα/ ∵ Φ[ξ(ε,□-ε)] = limn→∞ Πk=1n φ(ξ(ε,kT/n-ε),kT/n) = limn→∞ Πk=1n φ(ξ(ε,kT/n),kT/n+ε), Φ[ξ(0,□)] = limn→∞ Πk=1n φ(ξ(0,kT/n),kT/n). Therefore, φ(χ(ε),kT/n+ε) = ∫Dχ exp[(iα/ This means that φ obeys the ordinary Schrodinger equation when T/n=1/α, and so the new theory is natural extension of the old one. That is to say, the length of an instant which defines a quantum state is 1/α. Then we can write an approximate solution as follows. G(χ(ε),ε;χ(0),0) = ∫Dχ exp[(i/ φ(χ(ε),k/α+ε) = ∫dχ(0) G(χ(ε),ε;χ(0),0) φ(χ(0),k/α) (k=1,2,・・・,αT), Φ[χ] = Πk=1αT φ(χ(k/α),k/α) where G is the Green's function. --- Last edited at 2012/07/17/15:43JST |
SourceCodeOf_HumanGenome > Probability Interpretation @ 2012/6/22 16:25 |
---|
When Φ[χ] = ∫dx Πk=1αT G(χ(k/α),k/α;x,t0), ∫χ(a)=A,χ(b)=BDχ Φ[χ] ≠ C G(A,a;B,b) --- Last edited at 2012/07/21/14:42JST |
SourceCodeOf_HumanGenome > A Sketch of an Entangled Solution @ 2012/7/3 14:42 |
---|
Consider the case that T/n = 1/α and
the functional: Φ[χ] = ∫dx Πk=1αT G(χ(k/α),k/α;x,t0) where G is the Green's function. This functional Φ is a sum of quantum histories which give x for measurement at time t0. ∫Dξ exp[(iα/ ≒ ∫Dξ exp[(iα/ = ∫Dξ Πk=1αTexp[(i/ = [Πk=1αT∫dξ(0,k/α) G(ξ(ε,k/α),ε;ξ(0,k/α),0)]Φ[ξ(0,□)] = [Πk=1αT∫dξ(0,k/α) G(ξ(ε,k/α),ε;ξ(0,k/α),0)]∫dx Πk=1αT G(ξ(0,k/α),k/α;x,t0) = ∫dx Πk=1αT∫dξ(0,k/α) G(ξ(ε,k/α),ε;ξ(0,k/α),0) G(ξ(0,k/α),k/α;x,t0) = ∫dx Πk=1αT G(ξ(ε,k/α),k/α+ε;x,t0) = ∫dx Πk=1αT G(ξ(ε,k/α-ε),k/α;x,t0) = Φ[ξ(ε,□-ε)] Therefore, Φ[χ] = ∫dx Πk=1αT G(χ(k/α),k/α;x,t0) is an approximate solution. ∫dx is not necessary, but I expect that the entanglement caused by it rationalizes the probability interpretation. This message follows the idea on 2012/07/02. --- Last edited at 2012/07/22/11:04JST |